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Abstract 

 

Numerous weathers, soil, and management 

factors that differ greatly in area and time 

considerably affect crop growth and productivity. 

Farmers can establish site-specific crop 

management practices while also learning useful 

information about their fields and crops through 

yield monitoring. The reveling of regional and 

temporal variability in crop yields is one of the key 

advantages of the yield monitoring system. The 

yield maps that are the end result of monitoring 

have a significant influence on the decision-making 

process. Mechanistic crop growth simulation 

models are helpful for predicting agricultural yield 

because they define crop development processes 

and quantify the impact of weather, soil, and 

management factors on crop growth and yield. 

Getting the spatial information on model input 

parameters, however, is the main obstacle to their 

application at the regional level. Data from remote 

sensing (RS), collected repeatedly over agricultural 

land, is useful for identifying and mapping crops as 

well as gauging crop vigour. In order to model and 

track crop growth at the regional level with inputs 

from remote sensing, crop simulation models 

(CSM) that have been successful in field-scale 

applications are being modified in a GIS framework 

with RS data. As a result, assessments are 

vulnerable to local soil variability, seasonal weather 

conditions, and crop management techniques. The 

leaf area index (LAI), crop phenology, crop 

distribution, and crop environment can all be 

learned from the RS data. This data is integrated 

with CSM in a variety of methods, including direct 

variable forcing, parameter re-calibration, and the 

use of simulation-observation discrepancies in a 

variable for yield monitoring correction. 
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I. CONCEPT OF YIELD MONITORING 

 

For a rising population to have enough food, crop yield monitoring is crucial. A 

component of precision agriculture called yield monitoring aids in giving farmers the 

information they need to make informed decisions about their fields. Farmers can learn useful 

information about their fields and crops through yield monitoring while also establishing site-

specific crop management practices. The identification of regional and temporal variability in 

crop yields is one of the key advantages of the yield monitoring system. The yield maps that 

are the end result of monitoring have a significant influence on the decision-making process. 

Therefore, timely and accurate yield monitoring and estimating at a regional level is crucial 

for maintaining national food security and promoting sustainable agricultural growth. 

 

II. CHRONOLOGICAL ADVANCEMENTS IN YIELD MONITORING  

 

Initially, to simulate crop growth dynamics including LAI, canopy cover (CC), and 

the total dry biomass, mathematical formula-defined crop models are employed [1]. These 

models provide yield estimations and indicators of crop growth status, driven by dynamical 

elements such as the environment, management, and soil conditions [2]. By supplying more 

relevant information, which would enhance model calibration and parameterization and boost 

the simulation accuracy at a regional scale, this uncertainty of crop models was minimised. In 

order to improve yield predictions, new methodologies or procedures can be used to 

effectively and efficiently integrate observable data into crop models [3]. The rapid 

development of remote sensing technology has made it possible to acquire timely crop 

growth status information during the growing season at the regional to global scale [4]. By 

making more use of these in crop models, this uncertainty can be minimised. For example, 

LAI [5], the percentage of photosynthetically active absorption (FPAR) [6], chlorophyll 

content [7], evapotranspiration [8], and soil moisture have all been estimated using remote 

sensing at various geographical resolutions [9]. To estimate biophysical and biochemical 

parameters from vegetative indicators, numerous techniques have been developed [10]. 

Recently, it has been thought that using remote sensing data in crop models is a good way to 

keep track on crop development and yield [11]. 

 

III. CROP GROWTH MODEL FOR YIELD MONITORING 

 

Crop simulation models (CSMs) mimic how changes in the growing environment 

affect plant growth and development on a daily basis. They are based on real plant processes. 

A CSM is a straightforward illustration of a crop that serves as an explanation. Phenology, 

photosynthesis, dry matter generation, and dry matter partitioning are the main processes that 

are modeled in simulation models intended for potential production. Modules for 

phyllochron, branching pattern, and probable flowers/grain filling sites are among those 

targeting crop-specific bihaviour. Models of soil water balance, crop uptake and transpiration, 

and nitrogen transformations in soil, uptake, and remobilization inside plants, respectively, 

are incorporated to model the reaction of crop to environments with limited access to food 

and water. Weed and pest impact models are being developed and included in the advanced 

generation of crop simulation models. 

 

State, rate, and driving factors are the three categories of variables identified in 

dynamic crop simulation models. Quantities that can be measured at certain times include 
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biomass, soil nitrogen content, plant water content, and soil water content are considered as 

state variables. Driving variables, also known as driving functions, describe how the 

environment affects the system at its limits. Their values need to be continuously tracked, for 

example, meteorological variables. Each state variable has a set of rate variables that describe 

the rate of change for each state at any given time as a result of particular activities. These 

variables depict the movement of biomass or material between state variables. In India, the 

use of the CERES-Wheat component of DSSAT for predicting regional wheat yields was 

shown [12]. 

 

Basic Steps in crop growth simulation modeling 

 

1. Define goals: Agriculture system 

2. Define system and its boundaries: Crop model 

3. Define key variables: 

 State variables  

 Rate variables  

 Driving variables  

 Auxiliary variables  

4. Quantify relationships (Evaluation) 

5. Calibration/verification 

6. Validation 

7. Sensitivity analysis 

8. Use of model in decision support 

 

IV. REMOTE SENSING FOR YIELD MONITORING 

 

Remote sensing (RS) is a technique of gathering information about the Earth's land 

and sea surfaces by receiving the radiation, reflected or emitted from the Earth's surface [13]. 

We remotely gather data using a variety of sensors that may be processed to learn more about 

the thing, places, or phenomena being studied.  

 

Optical remote sensing uses VIS, IR, and SWIR sensors to create images of the 

Earth's surface. At these visible and infrared wavelengths, different material reflects and 

absorbs radiation in different ways. Targets can thus be distinguished from one another based 

on the spectral reflectance characteristics visible in the remotely sensed photographs.  

Table 1: Various categories of optical RS  

 

Imaging system  Example 

Panchromatic  IKONOS pan, SPOT HRV-Pan 

Multispectral  Landsat MSS, Spot HRV-XS, IKONOS-MS 

Super spectral  MODIS, MERIS 

Hyperspectral  Hyperion on EO1 satellite 

 

In contrast, RADAR sensors work in the electromagnetic spectrum's microwave 

region. Synthetic Aperture Radar (SAR) sensors have grown in significance as a source of 

data for monitoring and managing natural resources and agriculture. For example, RISAT-1, 

RADARSAT, Sentinel uses microwave radiation. Signal penetration inside of vegetation and 
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soil targets is improved while operating in the microwave region. The longer wavelengths of 

a radar imaging system, as opposed to optical sensors, are unaffected by cloud cover or haze, 

allowing data collecting irrespective of atmospheric conditions.  

 

In order to identify and distinguish the majority of the main crop varieties and 

circumstances, optical RS has been employed to monitor the situation of global agricultural 

production. However, using this technology for crop monitoring in agricultural areas with 

regular cloud cover can be problematic. Radar RS data, on the other hand, are sensitive to 

vegetation biomass and structure, making these sensors a desirable choice for crop 

monitoring. Radar data and wavelengths in the visible and infrared light both offer 

complementing information about various target characteristics. Intense research efforts are 

being made to apply RS technology as a result of the synergy between data from optical and 

SAR sensors. When combined, optical and radar data offer an important source of 

information for agricultural applications. 

 

Methods of crop yield prediction through remote sensing 

 

1. Empirical models with remotely sensed input 
 

 Vegetation index 

 Crop spectral signature 

 

2. Integration of remotely sensed data in crop simulation model 
 

 Biophysical parameter (Example: LAI) 

 Agro-meteorological parameter (Insolation, LST, Rainfall, AET/PET, Soil Moisture) 

 

1. Empirical models with remotely sensed input: RS data collected repeatedly over 

agricultural land aid in crop identification, mapping, and crop vigour assessment. The 

presence and concentration of photosynthetic pigments had an impact on the reflectance 

between 350 and 700 nm. The chlorophyll absorption band caused the dips in reflectance 

at 450 and 680 nm. It was discovered that the reflectance between 800 and 1300 nm was 

at its highest which is controlled by the interior structure of leaves. Due to the water 

absorption band, dips in the plant reflectance curve were seen around 1300 and 1900 nm. 

In order to identify functional correlations between crop features and RS observations, 

vegetation indices (VIs), which are mathematical combinations of canopy reflectance 

primarily in the red, green, and infrared spectral bands, are used. NDVI is the widely used 

VI for the yield monitoring. According to research by Reference [14], the normalized 

difference red edge (NDRE) at heading stage accounted for 88% variation in the wheat 

grain production. Biomass is a crucial indicator for yield monitoring since it can reveal 

plant growth status. LAI and above-ground biomass can be calculated from RS data using 

parametric empirical correlations between in situ observations of the aforementioned 

components and vegetation indices.  

 

2. Integration of RS inputs in crop simulation models: Reference [15] first suggested the 

use of RS data to increase the precision of crop models. They suggested using spectrally 

calculated LAI as a direct input to the physiological crop model or as an independent 
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check to the model's computation for the model's re-initialization. The fundamental 

benefit of employing remotely sensed data is that it allows for a measurement of the real 

state of the crop over a vast region using less labor- and resource-intensive techniques 

than in situ sampling. Crop models offer a continuous estimate of growth through time, 

whereas RS offers a multispectral evaluation of the current state of the crops in a specific 

area. There are different ways to incorporate remote sensing data into the models:  

 

 Direct use of a driving variable estimated from RS  

 Updating of a state variable derived from RS (‘forcing’ strategy); 

 Re-initialization of the model 

 Re-calibration of the model 

 Re-parameterization using coupled crop simulation models and canopy radiation 

models 

 Corrective method 

 

Direct use of driving variable: The driving variables of CSMs are weather inputs, which 

comprise daily observations of the maximum and minimum temperatures, solar radiation 

(SR), relative humidity (RH) and wind speed etc. An important disadvantage to using this 

strategy is the insufficient availability of RS-derived metrics caused by the cloud cover issue 

and inherent characteristics of sensors and platforms. In order to predict provincial millet 

yields halfway through the crop duration to within 15% of their ultimate values, reference 

[16] used METEOSAT-based decadal (10-day) rainfall using cold cloud duration as input to 

CERES-Millet.  

 

Forcing strategy: The forcing technique entails using remote sensing data to update at least 

one state variable in the model. The most often updated state variable is LAI. Figure 1 

illustrates the idea of a straightforward crop simulation model and how it is modified for RS-

derived LAI forcing. Reference [17] said that the forcing might be carried out either on the 

daily LAI profile or just on the day of the RS observation. 

 

Re-initialization strategy: The re-initialization method makes use of the fact that state 

variable initial conditions have an impact on model performance. It entails adjusting the 

initial condition of the state variable. The starting value of LAI (L0) during emergence can be 

changed to reduce the error function between remotely observed LAI values and simulated 

LAI values throughout simulation [17]. Results from updating (forcing) were identical to 

those from re-initialization using one observation.  

 

Re-calibration/re-parameterization strategy: This method makes the assumption that the 

model is formally adequate but has to be re-calibrated. By lowering the error between the 

state variable calculated by RS and the model's simulation of it, this is achieved. This renders 

a method which is susceptible to mistakes made when obtaining state variables from RS data. 

The choice of parameter to adjust and the quantity of observations used in analysis depend 

critically on the model structure. Reference [17] used remotely sensed green LAI (GLAI) 

measurements to show how the maize model needed to be re-calibrated. With the increase in 

number of parameters, more reliable estimates of LAI and biomass at anthesis were found, 

according to a multi-dimensional error function reduction technique. 
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Re-parameterization: Instead of obtaining canopy parameters from radiometric data, crop 

models can directly use it while being re-initialized and re-parameterized [18]. To simulate 

the temporal behaviour of canopy surface reflectance, which can be compared to satellite-

observed canopy reflectance, a radiative transfer reflectance model is coupled to a crop 

production model in this method.  

 

Corrective approach: A correlation is established between the inaccuracy in the ultimate 

yield and the error in some intermediate variable as accessed via RS measurement. In a 

situation where the final yield is unknown, this connection may be used. Reference [19] used 

this technique to produce wheat yield maps for farmer fields during rabi 1998-1999 in Alipur 

block (Delhi). 

 

 
 

Figure 1: Forcing strategy of LAI (Wlv, Wst and TAGP implies weight of leaves, stem 

and total above-ground production, respectively) 

 

V. GIS, REMOTE SENSING AND CROP SIMULATION MODEL FOR YIELD 

MONITORING 

 

Geographic information system (GIS), a powerful set of tools, can be used to collect, 

save, access at any time, modify, and display geographical data from the real world for a 

variety of purposes [20]. Digital geographic data, computer software, and computer hardware 

are the three main components of a GIS. On the other hand, RS data collected repeatedly over 

agricultural land aid in crop identification, mapping, and crop vigour assessment. 

 

It is a well-established practice to employ GIS along with RS data for yield 

monitoring during all stages of the activity, including planning, analysis, and output. GIS is 

used during the planning phase to either (a) stratify or zone an area using input layers 

(climate, soil etc.), or (b) convert input data (weather, soil) into a common format. GIS is 

primarily used in the analysis phase to perform operations on NDVI raster layers or compute 

VI profiles within predetermined administrative borders. GIS is also utilised in the final 

output phase to aggregate and show results for specific regions and to produce map output 

products. 
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VI.  INTERFACING CROP SIMULATION MODELS TO GIS 

 

Crop simulation models, used with input data from a particular field or site, produce a 

point output. Geographically variable inputs (soil, weather, and crop management), when 

combined with a GIS, can be used to improve crop yields, these simulation models' range of 

applicability can be expanded to a larger scale. The main objective of integrating models and 

GIS is to carry out simultaneous spatial and temporal analysis because region-scale crop 

behaviour has a geographic component and simulation models produce a temporal output. 

Although GIS and modelling tools have been around for a while, integration and the 

conceptual framework have only recently received attention. In their evaluation of GIS and 

agronomic modelling, Reference [21] recommended using the terms "interface" and 

"interfacing" as catchall terms for using GIS and modelling tools at the same time, and 

linking, combining, and integrating as appropriate language for the degree of interfacing. 

 

1. Combining: Combining also entails showing model outputs and processing data on a 

GIS, nonetheless, the model is configured with GIS, and data are immediately exchanged. 

This is accomplished using the GIS package's macro language, interface programmes, and 

user callable procedure libraries (Figure 2a). This calls for more intricate data 

management and programming than just connecting. AEGIS (Agricultural and 

Environmental GIS) and ArcView are an example of how to combine. 

 

2. Linking: GIS is used in straightforward linkage schemes to geographically show model 

outcomes. Model output interpolation is a straightforward strategy. An advanced tactic is 

to create a database that contains the model's inputs and export the model's outputs to the 

same database using GIS tools (interpolation, overlay, slope, etc.). Grid cell or polygon 

identifiers in input and output files are used to transport data between the GIS and the 

model. These files are transferred in binary or ascii format (Figure 2b). Due to (a) 

dependence on GIS and model formats, (b) compatibility issues with operating systems, 

and (c) underutilization of GIS capabilities, such an approach is unable to fully leverage 

the potential of the system. 

 

3. Integrating: Integrating refers to the process of integrating two systems. A model is 

either integrated into a GIS system or a GIS system is integrated into a modelling system. 

This enables automatic usage of statistical software and relational databases (Figure 2c). 

This calls for a great deal of skill, work, and knowledge of the two tools. The AEGIS, 

created by Reference [22] enables the user to choose different spatially distributed crop 

management practise combinations and assess the prospective crop yield.  
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Figure 2: Organizational structure for (a) linking, (b) combining and (c) integrating 

GIS and crop models 

 

VII. YIELD MONITORING SCENARIO IN INDIA 

 

The outcome of agricultural production is quite uncertain. The risk associated with 

farm production is increased by hazards and unforeseen extreme weather events. Numerous 

dangers have a direct impact on the welfare and production choices of farmers. As an 

agrarian nation, 48.9% of Indians work in agriculture either directly or indirectly [23]. In 

2015, 12,602 people in the farming industry (8,007 farmers and cultivators and 4,595 

agricultural workers) died by suicide, making up 9.4% of all suicide victims in the nation 

(1,33,623) [24]. Numerous governmental and non-governmental organisations have been 

working to alleviate the financial loss that farmers have experienced as a result of these 

unforeseeable events. The Indian government's Pradhan Mantri Fasal Bima Yojana (PMFBY) 

programme is one of its initiatives. With the aim of protecting farmers against crop losses, 

this insurance programme was introduced in 2016. The programme was established to shield 

farmers from the production-related risks and to motivate them to increase their crop 

investments. In reality, though, insurance corporations profit more than farmers. This is 

primarily due to the approach taken to estimate yield and damage. In India, crop counts are 

calculated using enumeration, and crop yields are evaluated using a sample survey method 

called a crop cutting experiment (CCE). In the field, crop cutting is accomplished by 

establishing a designated area, harvesting the crop there, and then weighing the crop. 20% of 

districts are chosen annually to participate in these studies. Therefore, the spatial variation in 

yield caused by variations in the chemical and physical qualities of soil, which may be 

obvious within a field itself, would not be taken into consideration by this experiment. 

Additionally, there is no systematic mechanism of recording the outcomes of CCE studies. 
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By calculating the spatiotemporal variation of yield and crop acreage, the proper operation of 

this method (PMFBY) may be guaranteed. Manually carrying out these stages is laborious 

and time-consuming, and it may cause settlements to be delayed. With the development of 

remote sensing, it is now much easier to monitor crop health, crop yield, and other factors 

such as loss and risk associated with agricultural production in close to real-time. The crop 

health and other variables causing the spatial variance in agricultural output can be monitored 

by Satyukt Analytics, a RS expert. 
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